0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

The Eccentric Compression Performance of Spirally Stiffened Thin-Walled Square Concrete-Filled Steel Tubular Laminated Composite Members

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 8, v. 12
Page(s): 1151
DOI: 10.3390/buildings12081151
Abstrait:

To enhance the local buckling resistance of thin-walled steel pipes and enhance their fire and corrosion resistance, a new spirally stiffened thin-walled square concrete-filled steel tubular laminated composite member with transverse ribs is proposed. Through the four forms of combined members for eccentric pressure testing, it was found that: ordinary thin-walled steel pipe concrete drum buckling is more severe; with spiral ribs, the buckling is limited between the stiffening ribs; and the deformation is significantly reduced. By addressing the problem of cooperative work between the inner and outer structural layers of new components, it was found that, after setting constraints such as steel bars, the integrity of the two can be ensured, and the stress performance is significantly improved; compared to ordinary steel pipe concrete, the load-carrying capacity is 17.9% higher, and the deformation capacity is roughly equivalent. Spiral ribs as a new form of spatial restraint, in addition to increasing the local bending stiffness, manifest an overall restraint role in limiting lateral deformation of the steel pipe, whereas the role of vertical stiffness is insignificant. Based on test evidence, the influences of the width to thickness ratio of spiral ribs and pitch were determined, and reasonable structural measures for the members were given. Through the N–M relationship curve, the limit of damage in compression and tension under eccentricity was obtained at an eccentricity of about 0.9. Finally, a method for calculating the eccentric compressive ultimate load capacity of this new composite member was proposed.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10688602
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine