0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Natural Ventilation Potential of Residential Buildings in China Considering the Combined Effect of Indoor and Outdoor Air Pollution

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 2, v. 14
Page(s): 363
DOI: 10.3390/buildings14020363
Abstrait:

With its rapid economic development, China has had to confront the serious issues of high energy consumption and air pollution. Natural ventilation is regarded as an effective method to reduce building energy consumption, but it is largely influenced by indoor and outdoor air pollution. However, most of the previous studies estimating natural ventilation potential (NVP) in China do not consider air pollution. This research estimated the NVP for residential buildings in major cities from four climate regions in China (Guangzhou, Chengdu, Shanghai, Beijing, and Shenyang) while considering the combined effect of indoor and outdoor air pollution. We compared the yearly NVP in three different scenarios, namely without considering air pollution, only considering outdoor air pollution, and considering both outdoor and indoor air pollution. The results show that Guangzhou had the highest yearly NVP, followed by Shanghai, Beijing, Shenyang, and Chengdu. The impact of air pollution could reduce the annual NVP in China by 78–95%. In addition, the main factors causing a low NVP differed between the four cities. The key factors for Chengdu and Guangzhou were natural ventilation flow rate and indoor air pollution, respectively. Beijing and Shenyang were mostly influenced by outdoor air pollution. Shanghai had two main factors with similar influence degrees, namely outdoor air pollution and indoor air pollution. The findings of this study will guide architects and policymakers in better forming natural ventilation strategies.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10760364
  • Publié(e) le:
    15.03.2024
  • Modifié(e) le:
    25.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine