0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Numerical and Statistical Evaluation of the Performance of Carbon Fiber-Reinforced Polymers as Tunnel Lining Reinforcement during Subway Operation

Auteur(s): ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 12
Page(s): 1913
DOI: 10.3390/buildings12111913
Abstrait:

Ground vibrations during train operations have become a serious problem in recent years. Local residents often feel disturbed by the vibrations emanating from the railroad line. This inconvenience is particularly pronounced in loose areas traversed by subways. However, improving the mechanical properties of tunnels has been the subject of several studies. Among these works, the widely discussed fiber-reinforced polymer (FRP) is considered as a material that can be incorporated into the tunnel structure to increase stiffness, durability, and corrosion resistance. However, the function of FRP in the interaction between the soil and the tunnel during operation has scarcely been studied. In this study, the effectiveness of carbon fiber-reinforced polymers (CFRP) as reinforcement of tunnel lining on ground vibration is investigated. For this purpose, a nonlinear 3D finite element model was developed based on a subway section in Shanghai to simulate the dynamic behavior of the system. The moving subway load was modeled as a transient dynamic load via a DLOAD subroutine, in which the rail irregularities are taken into account. The numerical model was efficiently validated by field tests. Then, the efficiency of using CFRP as concrete reinforcement of the tunnel lining during the subway operation was investigated. In addition, a statistical analysis of the ground dynamic response depending on the CFRP bars properties is presented, evaluated, and discussed.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700327
  • Publié(e) le:
    10.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine